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tion specifies the line source intensity in terms of a rate of change of the
cross sectional area distribution in which the unsteady motion of the body
surface is taken into account)
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1ifting wing-body combinations. A restricted class of these shapes has been
considered in which the wing span increases monotonically from a common apex
with_the bo For pointed tails, the aerodynamic efficiency can be maximized
by minimization of the wave drag. A parameterized inverse (PI) procedure is
utilized to demonstrate substantial decreases in this quantity. The PI method
employs a parameterized fairing of the surface pressure distribution about a
discontinuous one associated with a surface shock. The parameters are adjusted
to minimize the drag and satisfy constraints such as specified thickness, and

. base area as well as closure as a special case. With the procedure, the

. question of the existence of supercritical shock-free axisymmetric bodies has

. been addressed. The examples investigated suggest that such shapes can be

. found. Other results demonstrate that surface smoothing of the pressure will

{ not be synonomous with the wave drag elimination due to focusing and envelope

\fonnation of the wave system off the body.

VEQFor the wall interference portion of the effort, the method of matched
asymptotic expansions is utilized to study the singular perturbation problem
relevant to transonic airfoils confined by large height to chord ratio

solid walls, In this class of flows, the (inner) near field is represented
as a linear urbation about the nonlinear free field which is assumed to
be governed |by the Karman-Guderley small disturbance theory which is non-
uniformly valid as the walls are approached. In the far field (outer) region,
another approximate representation of the wall-airfoil interaction involving
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Through the use of intermediate l1imits, matching of both representations is
demonstrated. Some numerical solutions for the inner problem are illustrated
in which the inner limit of the outer solution is employed as a far field
boundary condition for the perturbed flow. Means of correcting the tunnel
incidence to obtain an interference-free value for the 1ift are demonstrated
from the examples. By virtue of the nature of the perturbation method, the
height dependence is separated out from the problem and universal correction
functions are available from the theory for airfoils at given incidence and
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FOREWORD

This document constitutes the final report for AFOSR

Contract F49620-80-C-0081A for the period June 1, 1980 to May 1, 1982.
Contained herein is a summary of research in two areas: asymptotic theory
of transonic wind tunnel interference as well as slender body theory and
optimization. Each of the topics employs an integrated approach consisting
of asymptotic and numerical procedures useful in describing the flow.
Actually, both subjects are interrelated, since the three-dimensional wind
tunnel problem for many configurations embodies many of the asymptotic
ideas arising in slender body theory and the equivalence rule.

This report is written in two separate sections relevant to the
previously enumerated areas. These give a fairly detailed account of the
research effort in each. Principal outcomes of the program are the
following:

o A systematic asymptotic theory for solid wall interference
over two-dimensional airfoils

¢ A new unsteady version of the equivalence rule

e A means of optimizing transonic 1ifting wing bodies in
steady flow and the first solution our knowledge of the
axisymmetric inverse problem with closure allowing "nonlinear
area ruling"

o New results for the nonlinear component of the far field
around 1ifting airfoils at transonic speeds.

The work on transonic wind tunnel wall interference is a natural outcome
of activity on tunnel wall far fields under previous contracts.

In addition to the description of accomplishments, suggestions
for future effort are provided.
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PART 1

SLENDER BODY THEORY AND OPTIMIZATION PROCEDURES
AT TRANSONIC SPEEDS*

SUMMARY

Two areas have been investigated within transonic slender body
theory. In the first, the existence of an unsteady equivalence rule has
been verified in which the outer solution is governed by axisymmetric
unsteady small disturbance theory subject to an unsteady line source
internal boundary condition and far field. As in the steady case, the
strength of the line source depends on an inner solution for the poten-
tial, which is harmonic in cross planes to the flow. This solution
specifies the line source intensity in terms of a rate of change of the
cross sectiona) area distribution in which the unsteady motion of the body
surface 1s taken into account.

The second portion of the research effort deals with optimization
of slender 1ifting wing-body combinations. A restricted class of these
shapes has been considered in which the wing span increases monotonically
from a common apex with the body. For pointed tails, the aerodynamic
efficiency can be maximized by minimization of the wave drag. A parameter{zed
inverse (PI) procedure is utilized to demonstrate substantial decreases in
this quantity. The Pl method employs a parameterized fairing of the surface
pressure distributfon about a discontinuous one associated with a surface
shock. The parameters are adjusted to minimize the drag and satisfy con-
straints such as specified thickness, and base area as well as closure as a
special case. With the procedure, the question of the existence of super-
critical shock-free axisymmetric bodies has been addressed. The examples 1
investigated suggest that such shapes can be found. Other results dem-
onstrate that surface smoothing of the pressure is synonomous with wave
drag elimination due to focusing and envelope formation of the wave
system off the body.

*Materfal from this section will be submitted to the AIAA Journal for
publication in the future.
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1.0 INTRODUCTION

During the 1950's, techniques were developed to analyze and design
aircraft to accelerate through what was then called the sound barrier. The '
‘_ procedure employed was an "area rule"® in which the drag of a complete :
i airplane was computed from that of an equivalent body of revolution.

: A related development with the Oswatitsch equivalence rule which was
later further enunciated by Spreiter and Heaslet in Ref. 3. Therein, cases
were considered in which the incidence was small with respect to the
thickness. This approximation leads to a well known further decomposition
for transonic flows which is indicated schematically in Fig. 1. As shown,
the nonlinear embodiment involves the solution of two problems. The first
is the nonlinear flow over an equivalent body of revolution and the second,
a cross flow probiem which can in turn be decomposed into a steady asym-
metric cross flow and an unsteady symmetric flow associated with the cross
section expanding at the rate at which the flow moves downstream.

1 In spite of its well developed status, the Jones-Whitcomb area

) i rule in which the equivalent body of revolution problem is linear, rather
! than nonlinear, can lead to suboptimal design solutions. Despite the rela-

] - tive weakness of shocks occurring in mixed flows, small drag changes carry

F important mission implications. An accurate means of drag estimation as

well as a systematic optimization procedure is required, particularly, when

the assumptions of Prandtl-Glauert theory are violated.

As one method of handling nonlinear effects, constrained mini-
mization has provided a useful means of optimizing transonic shapes under
certain circumstances. In this procedure, the body shape is expressed in
terms of a finite number of parameters. The nonlinear problem for the ‘
optimization of some aerodynamic quantity such as drag or aerodynamic effi- !

s cience as a functional of these parameters is solved in which an extremum
{s sought in the space of these variables using decision theory. Unfor-
v tunately, the computational effort required to obtain such a solution s

great, and only & local rather than global optimum is usually obtained
in this manner.
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Because of these deficiencies, a need exists for other methods.
One group of interest deals directly with desirable loading features during
the optimization process. A typical example occurs in transonic airfoil
theory in which nearly shockless surface pressure distributions and mini-
mization of adverse pressure gradients are obtained by a technique known
as the inverse method. At the Science Center, the approach has reached a
high degree of refinement for airfoil and wing problems. An account of
its current status is given in Ref. 4. Application to laminarization
is discussed therein as well as the aspect of closure.

In the design or inverse procedure, shapes are sought supporting
preassigned pressure distributions in contrast to the direct or analysis
method where the reverse is true. A typical.implementation is to smooth
out jump discontinuities in the surface pressure distribution that would
be associated with shocks. In principle, this process could lead to a
reduction in wave drag. However, it is not obvious that the elimination
of such a surface discontinuity will be synonomous with removal of the
shocks off the body. In this respect, constrained minimization has an
advantage, since it deals directly with a concomitant of the shock, the
wave drag. We believe that further understanding of the envelope forma-
tion process leading to this discontinuity, in concert with the inverse
method, could overcome this deficiency and provide it with even greater
power to solve the optimization problem.

On the basis of the equivalence rule and the inverse capability,
an attractive possibility occurs regarding optimization of slender air-
planes. This notion has stimulated the application of the technology to
the equivalent body of revolution component indicated in Fig. 1 in the
research effort to be described. Since the wave drag arises solely from
this contribution, a potent means of improving aerodynamic performance
is available with simplified versions of modern computational methods.
Here, the reduction in complexity arises from the dominant axial symmetry
of the asymmetric slender problem in the nonlinear part of the flow.
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In what follows, an cccount of the research concerning the

v solution of the inverse problem for slender configurations is given. Prior
to this discussion, a description of an unsteady equivalence rule will also
be provided. Herein, the basic methods developed in Ref. 5§ are generalized
to an unsteady context. Future applications for the modeling of flows
relevant to aerodynamic applications are indicated in this connection. For
the steady portion of the activities, the application of the optimization
procedures to achieve minimum wave drag are described as well as salient
issues dealing with constraints. In addition, the implication of wave
drag reduction measures relative to aerodynamic efficiency is also given
pointing to the need for further efforts which are also indicated.
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] ! 2.0 ANALYSES

2.1 Unsteady Equivalence Rule

Basic Equations

Denoting 3 the vector velocity p the density, P, the pressure,
T the time and %% the substantial derjvative, the continuity and momentum
equations for inviscid flow are respectively

Vepq = 0 (1a)

2
.. 2.g .0, (1b)

where subscripts denote differentiation, q2 = |q)2 and irrotationality
v has been assumed. If the flow is considered to be constant state and
adiabatic in the freestream, the energy invariant in isentropic flow is

B i i .
e,

2
f. 2 a2 . 2 ag a2
¢T+%+-in- f(T)--—2—+-,-Y-_—1--C s (1c)
where ¢ is the velocity potential, U is the freestream speed, a is
the speed of sound, subscript = denotes a freestream quantity, and

C and f are independent of T because of the freestream conditions
assumed. Substituting (1lc) into (1b) gives

av.q - '&-V{¢T-0-9;-} = 0 + (9;)1_ (1c*)
where

2 2 l .2
q2=¢x+¢R+F00 ’

S Btib i o i ko

for cylindrical coordinates, in which R,6 are polar coordinates
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in planes perpendicular to the X axis which is aligned with the free-
stream. From (1c') the full potential equation is then

2 2 2 2 azoR 2 0; Qee
(a-ox)oxy + (a%-og)opg * = *\a%- r ) Rr - 200ty
20,00 20.0,0
x®6%0x o®R%R 2
- RT . T TRT - 200y - 28y - jy 9%y
2020
- __§§J3 -0 =0 . (2)

Transonic Unsteady Small Disturbance Theory

Heuristically asserting that the asymptotic structure is
z similar to that of steady flow, an outer expansion representing the
{ ' flow at moderate distances from the slender body can be written as

f ¢ = u{x+c5=¢(x,F,e,E) + ... } (3a)
§ where ¢ is the body length, & is the body thickness ratio, and

1-M2
) xa%,italscﬂ,{=62-ucl,l(=—3,°—°fixedass->0 » (3b)

in the outer 1imit for validity for (3a). On substitution of (3a)
into (2), the unsteady smal) disturbance equation

R P

. ¢
[K-(r+1)8,0,, *+ § (Fou)y + 72 - 20,5 = O ()
. is obtained. As in the steady case, the preliminary assertion is made

(pending matching) that the ¥ derivative term dominates (4) as ¥ + 0. This
leads to the condition

27
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Tim Poy = S(x,E.N.0) (5)
F+0

where N and Q are dimensionless amplitude and frequency parameters.
These quantities ar{ise naturally in the boundary conditions to be des-
cribed. Besides (5), additional conditions necessary to determine the
solution of (4) involve the wake and far field. Since our focus is
primarily the existence of an unsteady equivalence rule, the latter will
be only briefly and qualitatively indicated here. For a subsonic far
field, it is reasonable to assume that an unsteady version of the line
source expression given in Ref. 7 will be applicable. The coﬁdition
on the wake is determined from an inner expansion in a region close to
X axis. The need for this representation is associated with a non-
uniformity of the outer expansion associated with a logarithmic
behavior given by an integral form of (5), i.e.,

¢ =S(x,t)anF + g(x,t) as r2 + 0. (5')

Formalizing this idea and following Ref. 5, the appropriate representation
is

o= {X4-62c¢*(x,r*,e,i,K.ﬂ,N) + ... } . (6a)
which is assumed valid in an inner limit
X,y* 2 /8 , £t = 62t fixedas §+0 . (6b)

On substitution of (6b) in (2), the steady cross flow Laplacian
equation is obtained as in the steady case as

*
¢:*r*+_ﬁr—*"%'f¢;e'0 s (7)
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where the (r*,8) polar coordinate system in a typical cross flow plane is
shown in Figs. 2 and 3a. If B(x,#,t) = 0, denotes the body surface, the
tangency conditions for (7) is

o e T sy NI

By+4-vw=0 . (8) !
If, furthermore, B is written in the form
B = R-ﬁCF(X,e,T) = 0 » (9)

and noting that

q 2,% * 7 6¢§"
g = G1es "x*"')fx““r*lr**'r'-?le* cee (10)

where T*,Tr and Ie are unit vectors in the indicated directions, substi-
’ tution of (9) and (10) into (8) yields on retention of terms to 0(§) the
relation

= Fo(x,0,8) +87Fz(x,0,8) ~ F (x,8,8) , (11)
r*=f

|
; e
{
{

c

where r* = F {s the body cross sectional boundary in the cross flow plane
shown in Fig. 3. In typical cases, the function F can be written as

F = f(x,0,asinqt) = f(x,6,asinut) (12)
‘ Q= ﬁ% =0(l) as § +0 .
. where if @ is the dimensional frequency, w = %f » and a 1is an amplitude in .
units of 6c. Some examples follow:
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Fig. 2. Slender body geometry
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Fig. 3a. Body cross section geometry

Fig. 3b. Non star-shaped region in cross flow plane
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nassnatingtitdie,

Harmonic Dilatation
f = asinwt G(x,6) (13a)

where aG is cross sectional shape at wt a'%

Harmonic Pitch and Plunge

f = ax"sinwtsino+ \/Gz(x.e)-azxZﬁsinzwmcos’e (13b)

where G is the cross sectional shape in the pitching or plunging frame,

n =0 for plunge and n = 1 for pitch, and imaginary values of the radical
in (13b) apply to 6 values outside of the range 5;< 8 < 6, shown in

Fig. 3b. Specialization of (8) to (13b) indicates that the quantity a must
be 0(1) in order that both terms of the left hand side of (11) are also
o(1).

For motions given by (12) and in particular, these examples,

2c. = + '
F o+ 8%Fp=F + NF(3) cosqt (14)

i 1 : ~ Fy

where 812 represents differentiation with respect to the third argument,
and N = aQs? = 0(62) since a, 2 have been assumed to be 0(1). If Q = 0(1)
and a = 0(6™2), unphysically large amplitudes would occur, or the radial
variation would dominate the circumferential ones in the left side of (11),
departing from desired generality. If Q=0(6"2%), with a = 0(1), then addi-
tional temporal derivative terms would be required in the equations of
motion and the boundary conditions as in the linear case. Note that for
planar flows, (of Eq. (4-7) of Ref. 6), the expression analogous to (14)
doee contain the second term involving an amplitude parameter such a N.
There, the inclusion does not lead to large amplitudes.

Py SR PRPL, } &0 I AT Wt 13 e -

R ———

4 Using identical procedures to that given in Ref. 5, the boundary con-
_ : dition (14) can be written as the following Neumann condition in the cross plane:
§ FF
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This is explicitly the same boundary condition (except with t dependencies)
as for the steady-state inner solution of Ref. 5. Using Green's theorem
as in Ref. 5, the asymptotic behavior of ¢* for large r* is

=k (rnA (162)
where
1 Vail _
A= '2',’; F2do . (16b)*

In accord with the previous remarks, the complete inner solution can be
written as

¢* = S*(x,t) log r* + g*(x,t)
2, gp(x.t)cosno + f (x,E)sinno

*2

n=]

(17)

,.*n

The matching procedures developed in Ref. 5 applted here give the following
results

S(x,8) = $*(x,E) = o A, (182)

*The 1imits shown are applicable 1f r*=F encloses the origin as a star
shaped region, i.e., r*=F(6,x) is a single valued function of 6. If not,

then A = F2do, where the 6 1imits are selected so that the contour r#=f
{s traversed in the counterclockwise sense.

-
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g(x,t) = g*(x,t) , (18b)

with the inner and outer expansions given respectively by

—" {Xﬂ:[(d’log 8)25(x, £)+626(x,r*, T:K.Q) + ]} (192)
for (6b) and,

®OUTER = ] {X+c62¢(x.F.E;K.Q) + ... } (19b)
for (3b), and the 5%%0g & switchback term inserted for matching purposes.

From the energy invariant and isentropy, the surface pressures
on the body r*=F are given by

c N N
- 55 = 25,(x,%) 20g87F + 29, (x,}) + Vg *+ W (212)

where

) gncosne + fnsinne

w - AT (21b)
n=1
z { gnsinne +f cosne} (21¢)

n=1

in which 9 and fn are functions of x and t.

1-14
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Summary - Unsteady Equivalence Rule

The unsteady equivalence rule is embodied in Eqs. (21) in
which

g = lim {¢(x,?.i) - S(x,t) Log ¥ } (22)
Fr+0

with S determined by (182) and ¢ the outer perturbation potential is
the solution of the unsteady small disturbance equation (4), in which
é% = 0, due to the equivalent body of revolution boundary condition (5).
The wake condition by symmetry is

0.8 =0 , x>1 (23)

in the solution of the outer problem.

In a practical application, the procedure described pre-
viously could be utilized to compute transonic unsteady flows over Tow
aspect ratio configurations such as fighter arrangements. To obtain
a truly useful tool however, generalizations are required to handle
shapes in which the wings are non-monotonically increasing in span
from the nose of the wing-body arrangement. For these cases, the
wakes play an important role, modifying the autonomy of downstream
sections. As in steady interactions, the higher order matching is
important, including a theory of the materialization of shocks in the
near field.

1-15
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. 2.2 Steady Slender Body Theory and Optimization Studies

The previous results when specialized to steady flow can be used
to study L/D optimization of wing-body configurations of the type shown in
Fig. 4. Here, the body has a circular cross section, and the wing is }
increasing monotonically from the pointed apex to the base section and is of {
zero thickness. Based on Ref. 5 and 8, the aerodynamic efficiency at an angle i

of attack a is given as

2n(s2-R,24+R.%/s?)a
% = 0 0 (24a)
&" gB+i}

where

2
B = ws(1)g(1) - § J; "$*(1,F,0)FF, (1,0)do - frog ¢][zns2(1)] (2a0)

.o 1
< I= -ij; S(x)g*(x)dx (24¢c)

R R

Ro = body base radius in units of the chord

s = span at base in units of the chord,

ST o e otre - e e Ay Py

and g and S are steady specializations of that given in (22) and (18a).
' In general, the specification of a fixed base could be driven by an engine

b it packaging requirement or RCS considerations.

1-16
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In the research conducted during the course of the program a
major emphasis was placed on drag reduction associated with the minimization
of the denominator in (24a). For a fixed Rols. (24a) indicates that the
maximum L/D corresponds to a minimum wave drag. The minimization involves
' global dependencies that modify B through g(1) and ¢*(1,F,8) in (24b). To
simplify the considerations, a part of the investigation was limited to a
simpler situation in which R0=0, i.e., the body is pointed at its tail.
For this case, (24a) specializes to

t- ; s’a (282')
é" S *{x)d
J; (x)g'(x)dx

e e aae iy s OB B

i.e., the 1ift is given by a wing alone value and the boundary terms are
absent from the drag. For a fixed span at the base, the aerodynamic effi-
ciency is again maximum when the denominator is minimized. For (24a'),

‘ the complicated global dependencies in the boundary terms are not present.

To meet the foregoing minimization requirement, an effort in

| | developing and applying special methods to derive pointed bodies supporting
shockless surface pressure distributions will be described. These proced-
ures are different than another one that evolved in an early phase of
this effort and was reported in Ref. 9. The latter had the focus of deal-
ing with certain coupling in the boundary conditions peculiar to the present
axisymmetric generalization of the two-dimensional airfoil problem described
in Ref. 4. In what follows, a description will be given of a new method

. tha provides a treatment of constraints that are vital for the L/D opti-

mization problem related tc equations such as (24a) and (24a'), and in
addition gives the first method of obtaining closure to our knowledge for

. the axisymmetric inverse problem.

A a—— b S e b e
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This "parametrized inverse" (PI) procedure consists of the
following steps:

1. Starting with a known body, the analysis boundary value
problem consisting of Eqs. (4), (5), (18a) and (23) is solved
to obtain a surface pressure CP given by (21).

2. In general, the pressure distribution of Step 1 will have 2
discontinuity associated with a shock terminating the super-
sonic zone. A fourth order polynomial is used to "refair”
the region in the vicinity in the shock as schematically
indicated in Fig. 5. In the notation of the figure, control
points at Xq and X, are shown, and continuity of slope and
value of Cp is required at these locations. Two parameters
are introduced toward minimizing the drag CD and obtaining
closure in the sense that F(1)=0. (A more general case in
which F(l).'-.F1 is prescribed is also discussed in what follows.)
The first parameter a is the midpoint value of CP shown in
Fig. 5, i.e., CP(x3). The second, is the intensity u of the

' leading edge singularity, where for bodies pointed at th2

¢ nose and tail, according to (21a), |

Cp = utog(lix) as x»3l, {25)
? b (if F ~ 12x)

and the subscript b refers to the body value. A CP varfation
near the nose of a symmetric parabolic arc body illustrating
this behavior {s shown in Fig. 6, where the freestream Mach ¢
number M, = 0.98 and the thickness ratio & = 0.167. It can be
] seen that the numerical procedure tracks the singularity quite
: well, except the first mesh point, which is understandable.

‘ In fact the proper strength u is also obtained on inspection of
‘ . the slope of the curves and (5').
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Fig. 6. Singular behavior at the nose of a fore and aft
symmetric parabolic body Me = 0.98, & = 0.167
(from SLOR solution)
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3. In the iteration procedure, a given value of the parameter a
is assumed as well as u. The latter is regarded as a constant
multiplicative factor for the entire CPb (x,a,u) distribution
on the interval -1<x<1.

Regarding (21a) as an ordinary differential equation for F in
which 9, is assumed known from a previous iteratfon, with CP
specified, wB-O. and vB-F', a two point boundary value problem
is solved for this equation in which

F(0) =F(1) =0 ' (26)

are the boundary conditions. With 9, fixed at this stage,

the solution technique is the method of bisection coupled

with a Runge-Kutta integration procedure. In the implemen-
tation, two initial values of u, Yp» and U, are obtained to
bound a range where R(1) changes sign. Values of u are changed
in the left hand side of (2la) using relaxatfon. A set of
loops are initiated in which

Cp =TCp + (1-r) Cp (27a)
RELAXED OoLD TARGET
and
C =u(
PNEWER TNEW.
(27b)
{ ! The ordinary differentfal equation (21a) is solved with
1 (27b) and the bisection method until
|F(1)]<.001. (27¢)

1-22
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Our experience has been that convergence is very rapid with
this approach. Typical values for the Wy are: y, = 0.2 and
uy = 1.8,

4. Once a new F distribution is obtained, the analysis algorithm
described in Step 1 is used to recalculate Cp and 9'(x). In
this step, F is relaxed in accord with the relationship,

r . Fouo * Few (28)
RELAXED * — 2

5. Steps 3-5 are repeated until

€, =C )
PNEw  PTARGET

6. The value of the drag coefficient is correlated against other
values of the parameter a introduced in Step 3. In (27a), the
value of T is adjusted in accord with the rule

I 1 0 (29)
T

where, 1<n<40, and n = number of iterations. Thus, according
(29), I'+0 as no=,

7. In a recent development, the value of F is renormalized by
introducing a new F in accord with the relation

F
MAX (

Step (7) 1s integrated into the {teration procedure as a means
of introducing a fair basis of comparison of the drag levels.

It should be noted that in the SLOR analysis code employed in Step 4,
it was adequate to use only 15 sweeps before the next phase of the iteration

roces initiated.
p s was initia 1-23




ﬂ
OIN oot

SC5267.3FR

3.0 RESULTS

] In what follows, 11lustrations of the PI method previously described
: to obtain shockless pressure distributions and closed axisymmetric bodies
will be provided. The implications of these measures with respect to wave
drag will also be addressed. Also to be {ndicated are calculations from
algorithms devised for the satisfaction of other constraints besides closure.
Viscous effects and base drag on finite base afterbodies have not been
addressed here but deserve consideration in future effort. Also, basic
issues of existence and uniqueness deserve attention. Another aspect inves-
tigated was the attainability of a zero wave drag body of revolution.

| To show the capability of the inverse method to eliminate surface shocks,
modifications of symmetric parabolic arc bodies were considered initially. Fig. 7
depicts a vertically expanded version of such a body (dashed curve) where the
notation of R is used in the figures for F. The associated pressure (dashed
curve) indicates a jump discontinuity produced by a shock at a location downstream
of the midpointof the body. For these calculations, 89 points were used in the

x direction with 55 points across the body. In the r direction, 31 points were
employed. Clustering was used in the vicinity of the nose and tail of the body
for the x grid and the usual expansion of the r grid at large distances from the

[ axis of symmetry was also applied. A smoothed pressure distribution shown as

b the solid curve arises from the 4th order polynomial discussed previously, where
the hump is indicative of the solution for the parameter a required to achieve
closure. The closure of the redesigned body shown as the solid curve is typical
of the success we have had with the PI procedure in meeting this goal.

In Fig. 8, a schematic of the formation of a shock over an airfoil
is shown in which the discontinuity is created by reflected waves of second
family characteristics from the sonic line.

I T N . allile bk

Fig. 9 indicates a typical wave system over a body of revolution.
In connection with these figures, it is of interest to establish under what
conditions envelopes form, and more importantly, when removal of the surface
pressure discontinuity results in zero wave drag. It should be noted in this
. connection, that solutions of Ref. 9 as well as the PI method of this report
produce reduced, but finite wave drag with smoothed surface pressure distri-
butions. In Ref. 9, the issue of closure was not addressed. Subcritical

= e e
W N .
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Fig. 8. Envelope formation of a shock over an airfoil
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SHOCKS
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Fig. 9. Shock structure over a body of revolution
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f . cases discussed therein demonstrated a finite drag for unclosed bodies.

Since a finite base body violates the assumptions in the proof of
D'Alembert's paradox, this result should not be surprising. Because the
bodies can be closed in the PI method, the wave drag can be traced directly
to the shock system.

Regarding the issue of drag, the basic drag coefficient CD of the
parabolic body for the case of Fig. 7 was computed to be .0459. For the
refaired pfessure distribution obtained in the iterations of the Pl method,
convergence to a value of 3=-0.275 lead to CD = 0.00022, practically
zero to within the truncation error of the calculations. This result is
tempered by the reduction of RMAX from unity for the parabolic case, to 2
1 value of 0.524 in the refaired case. Since there is a natural reduction in
drag with thickness ratio, a fair comparison between the original and
designed body should really be performed with both at the same thickness.
The drag of the rescaled redesign is obtained using the transonic similarity
L rule, which for axisymmetric bodies of thickness ratio & 1s

] = _%__..
5B G = 38 = F(K), (312)

;_ f where

K= (1-M3) /82, (31b)

Accordingly, 1f a CD is assocfated with an R = u, and u<l, say, then

the body thickness ratio should be increased by a factor u~!, and a new drag
coefficient CDZ should be calculated from a new analysis solution to evaluate
f(Ké), where K, = u’Ki. Then

1 Cp, * 3 7)), (32)

is the appropriate comparison drag coefficient for the blown-up redesigned
body. Since the rescaling of K{ to u’K{ drastically changes the flow field,

1-28
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with a probable generation or intensification of shocks for u<l, it is
important to implement Step 7 in the PI procedure previously described if

a meaningful drag reduction is to be achieved. Some results of preliminary
efforts in this direction will be described subsequently. The procedure
described in Ref. 9 embodies the feature of renormalizing RMAX during its

jteration cycle.

As a basis of a different sort of standardized comparison, the
flow field over a reference parabolic arc body with Raax * .524 was com-
puted at K = 1.48, the value utilized for the original parabolic and the
redesigned body. By contrast to the redesigned body, a surface shock
was exhibited for the parabolic body, although the drag was still low
(cD = .00066), but three times larger than the redesigned body.

Since the emphasis in the Pl method is to achieve closure as well
as address the question of the existence of drag-free bodies at transonic
speeds, the issue of RMAx standardization is of lesser importance at this
stage of the discussion. The significance of the redesign of Fig. 7 can be
more fully appreciated from a picture of the flow above the body. These are
shown in what follows in terms of isobar and isoMach level lines. In Fig. 10,
the isobar pattern for the parabolic reference body at the conditions of
Fig. 7 are indicated. The solid lines indicate expansion regions and the
dashed lines signify compressions. Evident in the map is the concentration
of contours above the 75% location of the body associated with the shock.
A corresponding isoMach map is shown in Fig. 11, where the supersonic bubble
is shown, as well as the transition from supersonic to subsonic flow at
the shock.

By contrast to the shocked pattern evident in Figs. 10 and 11,
Figs. 12 and 13 indicate a shock-free mixed flow. Thus, in spite of the
RMAX reduction, these figures provide some insight into the issue raised
previously regarding whether drag-free bodies of revolution exist in mixed
flow. On the basis of the apparent shock-free nature of the flow field
and the extremely low drag value CD = ,00022, prospects would appear
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Fig. 12. Isobar map for redesigned body
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encouraging for finding such bodies. The PI method appears to provide

an attractive procedure to generate such shapes that close. To

further elucidate the drag controlling mechanisms relevant to this
evidence, the nonlinear axisymmetric hodograph should receive attention.

In two-dimensional airfoil flows, the hodograph is linear, Garabedian
solves it numerically, and Nieuwland provides analytical solutions.

In some sense, these treatments prove the existence of shock—free airfoils.
Due to the non1inearity of the hodograph for the axisymmetric case,
existence of shock-free bodies can probably only be demonstrated in a :
constructive sense, i.e., the numerical solution of the boundary value
problem in the hodograph plane.

It is also interesting to note that Fig. 7, shows that the point
of maximum thickness moves rearward for drag reduction in mixed flow
over a body. This is in agreement with the optimum supersonic airfoil,
which is a vertically symmetric wedge section, whose maximum thickness
moves aft with increasing Mach number.

. Returning to Fig. 5, a study of the sensitivity of the drag

due to the fairing parameter a was conducted. The results are shown
‘ in Fig. 14, where CD and RMAx are plotted versus -a. A systematic trend
N is indicated showing that potent gains can be achieved through the use
of relatively simple minded smoothings of the shock discontinuities.

Loyl

In a previous treatment of the optimization problem for bodies
of revolution, Chan'® treated a two-parameter family of general parabolic
bodies of the form S(x) = Ax"(1-x)", A = (n+m)("+m)/8n"inm using "numerical
optimization" to determine the best selection of n and m to minimize the
drag. As in most optimization procedures, the best selection of n and
, i m did not eliminate the drag, and provided only a local extremum. In the
b ] P1 procedure, there appears to be an opportunity to control the drag
. directly, through the shock smoothing mechanism mentioned previously.

e AT
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Another study of wave drag associated with various values of the
parameter a is shown in Fig. 15, where the entropy jump integral across
the shock which is proportional to the wave drag is shown. Dramatic differ-
ences are shown, in which a fairing parameter a = -.109 can be selected to
give a drag actually higher than that of the parabolic body. Also indicated
is a very small value associated with a = -,2. In the figure, the irregu-
larities indicated are associated with the usual difficulties of shock capture.

In the study of the optimization process, a question of significance
arises concerning whether the parabolic body is a disadvantageous initial
iterate for PI process. The thrust of the question pertains to the pos..i-
bility that flattened bodies such as supercritical airfoils are useful as
drag reducers, since their slope contributions to the wave drag integral are
nearly zero on their nearly cylindrical portions. The associated shocks
could also be weak due to suppression of the envelope of the reflections. One
candidate for consideration is the shape shown in Fig. 16 hereinafter referred
to as the tanh body. In spite of the deleterious effect of overexpansions
near the forebody shoulder and the resulting shock, the drag can be mini-
mized to about 1/2 of the parabolic value through the selection of the
parameter €, the effective forebody length. It is interesting to note that
€ = 0.12 gives about three times the parabolic body result for the tanh shape.

As an illustration of some of the nonlinear wave steepening mech-
anisms present, Fig. 17 shows a sequence of axial distributions of pressure
at various heights above the body. The results are plotted for the minimum
drag value of €. The impossibility of improvement stems from overtaking of
the expansion-compression hump over the afterbody shoulder by another
hump from the forebody shoulder. As the height increases, the latter
swallows up the former. At even greater heights, a mild shock forms.
The shock was detected in this case by monitoring finite jump discontin-
uities of $yx and using expanded scales in graphic visualizations of the
process.
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To demonstrate the implementation of Step 7 in the PI method, the
. case of Fig. 7 was run again in which the parameter a = -0.17. In Fig. 18,
the body solution is shown as the indicated bulge about the parabolic con-
tour. Fig. 19 indicates the redesigned pressure distribution associated
with the bulged contour. It should be noted that spikes are due to limited é
convergence of the iterations for this case. Part of the marginality of
convergence stems from possible existence and nonexistence of neighboring
solutions in the iteration space. However, these difficulties are deemed
to be solvable with further numerical experimentation. The axial distri-
butions of pressure at various heights above the body have the same steep-
ening characteristics that are indicated in Fig. 17.

el

The important point about the cases in Figs. 17 and 18 is that
they conclusively demonstrate that smoothing on the body may not always
eliminate wave drag or shocks off the body. Therefore, the envelope
formation process should be studied carefully in future effort.

? In connection with earlier remarks on L/D, the last example shown

in Fig. 20 11lustrates the use of the PI procedure for a constrained finite
base. As usual, the reference parabola {s indicated for comparison purposes.
. The associated refaired pressure distribution is indicated in Fig. 21. For

L this case, the maximum velocity potential differences between old and new

. solutions near the end of the iteration sequence employed were as follows:

Analysis ', n+l ny .
Loop ‘. Max (¢ - ¢ ) = 0.0003

E::;g" : Max (6"t - ¢") = 0.00815
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Fig. 18. Body design with RMAX = 1 constraint and closure
implémented M_ = 0.98, & = 0.167
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Fig. 19.

Pressure distribution (partially converged) for redesigned

body with RMAX = ], case of Fig. 18
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R Fig. 20. Body design with a constrained finite base,

parameters identical to Fig. 18
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The convergence rate of the second difference was slow, but the impact of

this behavior appears to be small on the difference between the actual value of
CP obtained and the target variation. In Table 1, a comparison of the con-
strained RMAX and RBASE cases is shown. Dragy levels are also indicated
against the parabola value.

TABLE 1. COMPARISON OF DRAGS - OPTIMIZED CONSTRAINED BODIES
AGAINST PARABOLIC TYPE

Run a Rease Ryax Cp Co/Ryax

90A -0.17 0.2 0.841 0.0130 | 0.026

908 -0.17 0 1 0.0384 | 0.0384
PARABOLA - 0 1 0.0459 | 0.0459

Jt is evident from the table that substantial improvement from the drag
level of the parabolic body was made with the constrained maximum thickness
( generalization of the PI procedure. In the implementation for the finite
- base case, the absence of the tail singularity was ignored, with no major
E effect on the convergence of the closure jteration loop. Worthy of mention
in this connection is the subtle distinction between a sting support, open
body, wake and finite base. For the first, second and fourth situations,
a tail singularity is possible, whereas for the third, it is unlikely.
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j N 4.0 CONCLUSIONS
In the previous sections, results of our research on transonic j

slender body theory toward obtaining an unsteady equivalence rule and
application of an axisymmetric inverse design method to the study of
nonlinear area ruling concepts have been presented. Asymmetric configura-
tions were considered in the research. For certain classes of these
shapes in which the wing is of zero thickness and increases its span
montonically from a common apex, the L/D optimization problem consists

of minimizing the drag of the body for a fixed span of the wing.
Furthermore, if the body is pointed, the wing-body interference 1ift has
been shown by previous investigators to be that of the isolated wing.

For the drag minimization process for these 1ifting wing body combinations,
it is clear now that the PI method developed during the research program
can provide an extremely useful tool.

Substantial reductions of the wave drag can be achieved in many
cases in which the surface pressure jump discontinuity is refaired. It
has been also demonstrated that the refairing process can be utilized to
achieve satisfaction of constraints such as closure and fixed maximum
thickness. However, there are certain situations in which shocks develop
off the body. These have been demonstrated in our effort. For these
cases, the elimination of a surface discontinuity may reduce the wave drag
but not completely eliminate it. Therefore, a knowledge of the theory
of characteristic propagation and envelope formation for flow over axi-
symmetric bodies could provide target surface pressures to eliminate
these off-body shocks. Other aspects of the research have shown that
the initial {iterate in the design process can play a role in the degree
of drag minimization that {is possible. In fact, a study of a nearly
éy!indrical body when optimized in its forebody and afterbody sections
provides substantial reductions from the symmetric parabolic shape, if
. the lengths of these sections are optimized. The role of overexpansions

and shock formation is intimately involved in the proper adjustment
of these lengths as has been previously discussed.
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One question answered by the research effort concerns the
v exfstence of shock-free flow over axisymmetric shapes. From the results,
it would appear that to within the truncation errors of the numerical
methods, the answer must be in the affirmative. Because of the limited
information available however, more cases should be investigated and the
existence question should be studied by other methods such as the axi-
symmetric hodograph.

For unsteady flows, analytical results have been provided that
indicate the existence of an unsteady equivalence rule. Just as in the
steady case, the three-dimensional nonlinear problem for slender shapes
can be simplified to an axisymmetric one, with internal boundary condi-
tions associated with asymptotic behavior of an inner solution which
is harmonic in cross planes. With the substantial current cost of
computing transonic unsteady flows, as well as the need for avoiding
non-classical flutter, the simplifications and cost reductions afforded
by such a rule couid be of substantial advantage.

7’
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5.0 RECOMMENDATIONS

On the basis of the previous findings, it {s evident that
slender body theory may be exploited with modern computational techniques
to provide a basis for design synthesis of three-dimensional fighter
and missile configurations. Current practice in many organizatfons is
to use a linear "base point" and optimize on a trial and error basis
from direct solvers, inverse methods applied to an isolated component
such as a wing, cr wind tunnel tests. Because this may result in a
suboptimal extremum prejudiced by the linear base point, an alternate
F procedure is needed. For this purpose, the Pl method described in this
1 report appears attractive. However, for this tool to be more useful,

: additional development is required along the following Tines:

1. Wings of zero thickness in combination with circular
arc-cross section bodies were investigated. Although pro-
viding an indication of the significance of wing body
interactions as they relate to appropriate directions for
gains, the issues of wing thickness and body asymmetries
should be addressed. For such generalizations, an involved
tradeoff becomes evident between exposed area, for 1ift
and nonlinear area ruling required to reduce the wave
drag. An associated challenge is related to the ability

' to "unfold" the optimum equivalent body of revolution

determined by the PI method to produce optimum compromises
of design attributes such as those between aerodynamic
efficiency and volume.

-~ -

. 2. Another aspect of significance in the optimization process i
' deals with the interaction of wakes associated with plan- :
| forms of non-montonically increasing span in the downstream

direction. The implication of these effects on the equiva-
. lence rule and the optimization procedures considered here

S 1-49
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should be considered in future work. Propulsive effects
such as jets emanating from the base are other possible
avenues of research in which streamwise interactions are
of importance. Effort should be expended on the exploita-
tion of these effects for beneficial interference.

On a more fundamental basis, the theory of characteristic
propagation should be utilized to shed 1ight on envelope,
focusing and caustic phenomena associated with shock wave
development off axisymmetric bodies, particularly when no
surface discontinuities are encountered as in the examples
described in previous sections. This information could be
used to suggest the types of faired pressure distributions
leading to zero wave drag. Although we have demonstrated
encouraging evidence regarding the existence of shock-free
axisymmetric shapes, more information is needed on how they
can be produced from the PI method.

The work previously described considered iterative procedures
to satisfy various constraints. More effort is required to
handle generalized situations involving prescribed volume,
surface area, and multiple design points. From this stand-
point, viscous effects for example such as those dealing
with friction drag, adverse pressure gradients, are all

areas that are of interest.

For both the steady and unsteady problems, the materialization
of shocks in thé near field as well as special asymptotic
boundary layers required to treat these structures are of
interest regarding matching in higher orders of the slender
body theory. These aspects are important with respect to
nonlinear 1ift corrections in the slender body theory, and
studies of the impact of 1ift on the equivalence rule as
described in Refs. 11 and 12.
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PART 2

ASYMPTOTIC THEORY OF SOLID TUNNEL WALL INTERFERENCE
ON TRANSONIC AIRFOILS*

SUMMARY

The method of matched asymptotic expansions is utilized to study
the singular perturbation problem of solid wall interference on transonic
airfoils. For moderate to large wall heights, the (inner) near field is
represented as a linear perturbation about the nonlinear free field which
is assumed to be governed by the Karman-Guderley small disturbance theory
which is non-uniformly valid as the walls are approached. In the far
field (outer) region, another approximate representation of the wall-
airfoil interaction involving a multipole, dominated by a vortex reflected
between the walls is valid. Through the use of intermediate limits,
matching of both representations is demonstrated. Some numerical solu-
tions for the inner problem »-e illustrated in which the inner limit of
the outer solution is employed as a far field boundary condition for the
perturbed flow. Means of correcting the tunnel incidence to obtain an
interference-free value for the 1ift are demonstrated from the examples.
By virtue of the nature of the perturbation method, the height dependence
is separated out from the problem and universal correction functions are
avajlable from the theory for airfoils at given incidence and Mach
number conditions.

*To be presented as AIAA paper 82-0933 at the AIAA/ASME 3rd Joint Therwo-
physics, Fluids, Plasma and Heat Transfer Conference June 7-11, 1982/
St. Louis, Missouri.
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1.0 INTRODUCTION

Obtaining free-field characteristics of transonic wind tunnel
models will continue to be of central importance to aeronautical technology
for the indefinite future. Free flight aircraft performance predictions
depend on this process which is complicated by the presence of complex
nonlinear phenomena in the transonic regime. Although the wind tunnel
interference problem has received considerable attention at subsonic
speeds, and a number of classical theories have been developed, e.g.,
Refs. 1-3, there is room for progress even in this linear regime, as
exemplified by the recent efforts of Kraft,“ who devised an ingenious
procedure based on Cauchy's integral formula for two-dimensional flow
over confined airfoils. Among the advantages of this method in contrast
to the older concepts is that by measurement of two flow variables it
eliminates the need for both knowledge of the wall characteristics and
analytical synthesis of the model. Presently, effort is underway to
extend this procedure to three-dimensional and nonlinear transonic flows.

In connection with the transonic regime, other procedures have
been developed which possess attractive features. One, which is of great
interest, is a scheme that has been developed by Murman. This "post test
assessment method", which has been implemented in two-dimensions in Ref. 5,
is similar in some respects to an approach developed earlier by Kemp,®
and assumes a knowledge of the experimental pressures on the model and
walls. It uses modern computational and optimization procedures to deter-
mine whether the tunnel Mach number and model angle of attack are correc-
table in the sense that almost free-field model pressures can be obtained
at practically altered values of these parameters. For this purpose, an
inverse problem needs to be solved. In three-dimensions, surface pressures
over the model are generally not available, and efforts are currently under
way to modify the method toward the use of less information regarding the
model near-field.” 1f this goal can be achieved, this process will be of
value, including treatment of cases in which the walls are relatively

2-2




N

ARSI ¢y e 3 2t o At WA i = et ven g st eanee

1
g

’l‘ Rockwell intemational

Science Center

SC5267.3FR

f close to the model. In spite of the potentfal utility of this method,

‘ there is a need for approaches that can reduce the number of input

: parameters necessary to compute the correction, shed 1ight on the physics
1 of the wall interference phenomena, simplify the necessary computations,
¢ and be generalized to three-dimensions, as well as unsteady flows. Asym-
5 totic procedures provide such advantages. Furthermore, they can provide
' valuable interactions with the other methods previously mentioned to
suggest possible improvements as well as deriving beneficial features
from them as well.

In this report, an application of the asymptotic method to the
two-dimensional case involving a transonic airfoil between solid walls
will be studied. This effort is a forerunner of three-dimensional
formulations which besides their own intrinsic utility have relevance to
the methods of Ref. 4 and 5. Regarding the latter, one concept presently
being considered to simplify its three-dimensional application is unfold-
ing the singular character of the near-field rather than obtaining the
model's shape from an inverse solution of a problem involving specified
pressures based on measured values. As will be evident from what follows,
the asymptotic procedures can provide this singular behavior from certain
; r" 1imit processes. Moreover, nonlinear integral theorems as well as the
asymptotic structure of nonlinear integral equations arising in the match-
ing scheme occurring in the asymptotic analysis could be of use in the
procedure of Ref. 4.

Whereas methods such as those of Refs. 1-7, can handle arbitrary 1
model to wall dimension ratios e, the perturbation procedure assumes € to
. be small. This approximation is useful for many practical cases. . Further-
more, even for situations where € is not so small, the expansions appear
to have extended validity.

A previous analysis along these 1ines was conducted by Chan®
who treated the two-dimensional porous wall case. Because of its interest
in connection with compliant boundary applications and the fact that the 4

o e Ve e em -
.
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Chan solutions apparently do not subsume it as might be expected by a
taking a limit of the porosity parameter, we analyze the solid wall

case in this report. By contrast to the method of Ref. 8, we employ
"intermediate variables" to match the model near and far fields.

Although slightly more cumbersome than the approach utilized by Van Dyke,?®
we believe it provides a reliable means of ensuring that all the proper
terms are included in both representations.

In addition, numerical results will be provided in the report to
give some insight into the nature and magnitude of the interference effects.
The work of Ref. 8 in this sense was strictly formulation, with no compu-
tational application or quantification of the interference given.
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2.0 ANALYSIS i
b

Referring to Fig. 1, which indicates an airfoil nearly midway
between solid walls, in which ¥ - y§¥®, x and y are Cartesian coordinates
in units of the chord, h is the tunnel half height in the same units, UT
and MT are respectively free-stream speed and Mach number in the tunnel, ;
and transonic flow conditions are assumed in accord with a Karman Guderely i
(KG) limit. Thus, if § is a characteristic thickness ratio of the airfoil
whose shape is given by

y = 6Fu'2(x) - arX, IF“'lMAXI =1 (1)

where the thickness ratio is considered as unvarying from the (unbounded)
free field* and subscripts u and & denotes upper and lower surfaces and
o is the angle of attack in the tunnel, the appropriate expansion for
the velocity potential is

L °= U }x+52/= 0(x,33 Kp» ApH) + ... (2a)

ety

which is valid in the KG limit g

{ 1-M2 a 2
! Xy, Ky = ?:-T- , A= 'sl H=hi fixed as 60, (2b)

*More general situations could be considered.
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Fig. 1. Confined airfoil
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and leads to the following small disturbance problem* for the confined
transonic airfoil:

!
[Kp - (o, ] 0, + 055 = 0 (32)
¢y(x,0=) = Fup'(x) - A (3b)
¢y(x,Hz) = 0 (3c)
[¢x] = 0, Kutta-Joukowski (3d)
TE Condition
(x=1)
2.1 Inner Problem

A simplification of the problem associated with Eqs. (3) can be
{ considered in which expansions of ¢ in (2a) are considered for H + o,

. Near the airfoil, the walls are remote and thereby introduce weak pertur-
bations about a dominant nonlinear (KG) free field. Accordingly, an
jnner expansion is valid which can be written as

e,

¢ = dglead) + s 0P+ (4a)

x,y fixed as (H = €!) » = (inner 1imit) (4b)

in which subscript 0 denotes free flight and 1 is the dominant wall
correction. The gauge function ﬁy is anticipated as shown to achieve

*In the Results section this will be termed the "exact" problem.

i : : 2-7
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asymptotic matching to be discussed subsequently. For generality and
use in tunnel assessment and correction procedures, the similarity
parameter and angle of attack are also written as perturbations about
the free field values along with those for the potential in (4). Thus,

Ky = Ke + ﬁr Ko+ - (5a)
s 1
Ay = Ap + e Ac + ... (5b)

where subscripts F denote the free field, C is associated with wall
corrections, and T designates the tunnel value. On substitution of
(4) and (5) into the problem (3), and retaining corresponding orders,
the zeroth and first order problems are obtained as

(6a)
Ko - (v*1)s )¢ ton =0
(F o,/ % oy)7
(6b)
Ke = (y+1)o )¢ - (y+1)¢, o4 + 2 = -K. ¢
( F 0x 1xx 1x 0xx 19? ¢ 0xx
o1 (x,02) = F'  o(x) -A (6c)
y ]
[x]<]
¢0~(X,Oi) = ‘Ac (Gd)
y
(6e)
® =l =0
[°x]rs [lx]TE
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In the problem associated with the "variational" equation (6b) which
resembles others such as the 1ifting l1ine theory of Ref. 10, the jumps
across the 0th order shocks are perturbed according to the developments
given therein. In (6), if ' is the circulation, it can also be written

in the perturbation form

- 1
PT-FF+HZFC+...

To complete the formulation, a far field is required. In this connection,
it is crucial to note that the approximation (4a) is non-uniformly valid
near the walls and an "outer" representation is required. An "inner"
1imit of this outer solution (approaching the boundaries of the airfoil
near field) supplies the required inner far field boundary conditions.
These will be discussed presently. For the far field of the 0th order

problem the representation,

- 2 2
Igd + Te y*1 ¢nr E[ (y+1) cos3e
—r_"" cosg - 7

2n 4KF 16KF r

D 3
0 _cose 0 _sing
* 2t r * 2n r ? (7a)

Ky .
r -Jx2+KFy2+ © , 6 = tan 1‘/_F fixed, (ray limit)  (7b)

X

is appropriate on the basis of Ref. 10. In addition, the far field
anticipated and to be refined for ¢ is
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b =BT +Cx +MF +N -3+ ... (7c)

in which x2,§2 quadratic. terms are missing based on the matching to
be indicated, and Bl,Cl,Mi and N1 are constants to be determined in this
matching.

In this simulation, the aim is to select Ac and Kc to minimize
the correction in some sense.

2.2 Quter Problem

At distances from the airfoil where the wall influence is not
small, the outer expansions

8= rleryn) + Mg oy s Lo () + L, (8a)

are anticipated as valid in the limit

x* = X, e % fixed asH-+w, (outer Timit), (8b)

where the ¥y "switchback" term is inserted, anticipating in the matching
the effect of logs arising from the ocuter 1imit of (7a). On substitution
in (3), the equations obtained for the terms in (8a) are

Keq ) =0 , o0(1/H?) (9a)

x*x' y*y*

2-10
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. | K,,-vix.x* + .’iy*y* =0 , O(anH/H?) (9b)
Krwax*x* + vﬁy*y* = (y+1)¢bx*¢bx*x*.o(1/u’) (9¢)
with the wall boundary conditions,
¢ *(x*,tl) =¥ 1|t(x"‘,:l) =¥ *(x*,:l) = 0. (9d)
Y y y
2.3 Preliminary Matching Considerations

Under the assumption that to dominant order, \00 is a potential
vortex reflected between parallel walls, the exact expression from a
Prandtl1-Glauert scaled version of incompressible flow theory involving
either images or conformal mapping is

f. ¥y * NJO = F(Z) = complex potential
il
. 'ZTF &n tanh (%Z) (10a)
= -’S:.- * = i
FA \/KF+iy X + iy (10b)

The validity of Eqs. (10) is predicted on the assumption that the far field
is subsonic. On expansion of (10) for Z + 0, it is evident that

l 2-11
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I'F ."2
il T e T xty* + ‘ P X*,y*+0 . (11) (11)

In (11), the x*y* term is the effect induced in the origin due to the
wall reflections.

To compute ¢i, symetry properties that can be inferred from
the right hand side of (9c) are useful. These can be obtained from
symmetries of ¢b which are

*Po(x* *) = -\PO(X*,-y*)

‘po(X* ,.Y*) = -‘Po(‘x*-.V*)
from which it follows that

¢1(X* -y*) = ¢1 (X*"y*)

oy (x*,y*) = =9 (=x*,y*)

With these relations in mind, the simular behavior required for matching
can be obtained from a 1inear combination of particular, complementary,
and homogeneous solutions of (9c), in which the complementary solution
is added to satisfy the boundary conditions, and the homogeneous solu-
tions are required to provide enough arbitrariness in the doublet
strengths to achieve matching. Denoting ¢$ as a particular solution,

a choice is made for q% in which

. +] 1
be, = {%zl a é’-ﬁl Yo ¥Un s (12)
P Ke %xw"xx B Oy Oxyt
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where the right hand member of (12) is obtained from the Cauchy-Riemann

’ equations and is used in favor of the middle one to avoid branch point
singularities at the origin such as that occurring with the function
®= arg Z, and ¥o Is the harmonic conjugate of Y- Using a clever
device employed in Ref. 11, the appropriate particular solution of (12)
can be verified to be

» Syl
° {{;} {vovo, * Yoo, %, | (13)

On expanding (13) near the origin Z=0, some of the necessary terms
required for matching with (7a,c) appear, i.e.,

g‘:a
71

.nz x* 2 x*( ) 2 }
- X oner 1n1:7- - cos26+ ...} (15a)

r/H -0 (15b)

1]

/:‘ as r* = Q/X'2+KF,Y*2

= g, fixed. (15¢c)

o* = tan"

ey WK
o = tan .

The singular behavior of (14) near the origin contains no branches as
desired. Consistent with earlier remarks, the appropriate doublet terms
involving S%;Q are apparent and are of specific strength. However,
additional ones of arbitrary adjustable strength are needed for matching.

These will be obtained from a suitable homogeneous solution of (9c).

2-13
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In view of these considerations, the complete solution of (9c) is written
. as

LT R (16)

where % is a harmonic complementary solution added to satisfy the
boundary conditions violated by ~pp. According to (9d),

T W - n;w(r e - 7

A Fourier integral repre?)e(nta;:ion for % can be obtained from the wall
'a¢ 911

source distribution ——%v-———— in (17) as
1 1 chkY shm
\C “5’.3%(7 T fd“f cosk(X-C g Triehee)

which upon integration simplifies to

TFe\2 .
. 1 Fi1l sinkX chkY
% WF (z;) 7 f stk 9k

The behavior of which as X, Y+ 0 is

:.%J(" )" >, (18)

‘ ‘; ’ To obtain ¢H in (16), a further decomposition in which
: . Pu=t Rt %t (19)

[ 1 2-14
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is used, where.vg and “i are arbitrary strength doublets that are
respectively symmetric and antisymmetric in y* and «gc and ¢kc are
complementary solutions added to each of these components to satisfy
the wall boundary conditions. Thus,

d d
0 cose* 0 x*
Vs * 3~ " T T 7 (20a)

/,

pA ;9_ sine* _ +:K!Fy* (200)

with d0 and ) the adjustable strengths to be determined from matching.
Furthermore, on using the Fourier integral, recognizing that

. oY l WR !1+X5§
9 3¢Ac(x|i1) eo xz .
b )| m“ﬁx!,! :
- the following representation of the complementary components ¢§c is
obtained:

| we b [ [ eonteoti D i o

d d
0 sinkXchkY -k 0 n?

. e dk amnx*-*...as r*+~0 . (20c)
2 J; shk F
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In a similar manner,

%" " i f dk £cosk(x-5) {@ﬁ)ﬁﬁfﬁg},}da
€ a2
amny" asr*+0 (20d)

where the antisymmetric complementary component, ‘PAC represents a
divortex at the origin, which gives an induced upwash.

2.4 Matching

With the presumption that there is an overlap domain of
validity of the inner (near field) representation of ¢ and its outer
(far field) form, with no intermediate expansion required, appropriate
developments in this domain for each are to be obtained in what follows,
From these common representations, the unkown elements in both are
determined by matching. Coordinates specifying the overlap domain are
obtained from the ray preserving intermediate limit

~

= x L ]
X =TT ¢ Y ;ﬁn-.fixedasﬂow ,

where n(H) + », is an order class intermediate between unity and H.
Thus, x*=ﬂxn+0. y*=ﬁyn+0. and x = nx_+ @ §=ony o+

‘ nr
Also r* = —ﬁﬂ with r2 = x2 + Kcy2. The matching is effected by writing
the inner and outer representations in terms of these intermediate
variables. For the outer expansion, this is
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where similar terms have been identified with identical numerical
labels for matching purposes. From the orders appearing in (21) a
sharper lower bound for n(H) is obtained giving j

HP << n << H

For the inner problem, if a new dependent variable is introduced,
in which
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OI(X.S') 2 -Y-:-cr X + 31 »
then (6b) gives

(K=(v*1)05 )8, = (v*1)3, ¢, +¢, =0,
ox 1:(x ’ 1x Dxx 177

and on the basis of the foregoing matching requires that

T8
A g o C
ol(x.y) * Byxy + Pyxinr + €, x ¢ Qx cos2e + Mij + Ny - 5+ ...

or

¢1(x,y) -,ley + Plxinr + (—;CT + C1)""°1" €0s26
e
A NAL Y X R (22)

in the far field r = s/x’+KFy’ + «, in which the constants Bl'Pl‘cl’
“1’"1 and Q1 are to be determined by the matching process. For this
purpose, and inner solution is written in intermediate variables. The

resulting expansion is

@ @ @ ®

r Te\* Lnnr Te 2 0
I r) 1 n _( F) +1) cos38 . 0 cos8
At A} ~ (*tc) nr. cosd Zn %& nr, * 7 nr.
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r
E ® ® Q . ®
0 sind n3nl, 1
o nr, + a( e )" 1 {Blnzxnyn + Py tn e 4 (lw” + cl) N
® ®

T
+ anxn €0s20 + nlnyn - -2% o+ ... ' . (23)

In (23), the terms labeled @O, @ ,and @ match automatically to their
similarly labeled counterparts in (21) if the harmonic switchback term

'P* is given by
1 I'F : €os 9
ﬁ s
d ’* * F (’E) r

i ! On the basis of comparison of the orders to be indicated, the following
matchings apply:

e
-]
> 5 (24a)

NS

D d
oy ©3 2 (e o)+ 20

offe) : ®=> 8, =§(;§)7}¢ DD off) i hy - -ﬂ%f& (;-f;)z(m)
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r.\2

®3 0 - - (£) % (244)

(24e)

e
S . o
O3> -51%

To complete the matching considerations, it is noted that a switchback

T
+1 F) n?
term is required to match the term ﬁ;-}r(-ﬁ R xnan arising from
@ in the outer expansion. Since this Switchback term does not

vanish at infinity, a corresponding switchback term can be added to the
inner solution with a corresponding shift in the transonic similarity
parameter. Accordingly, the revised inner expansions replacing (4a)

and (5a) are

nH

°'°0+TIT°§*H1T°1*"' (4a')

(5a')

. 2nH 1
KT KF'*-R-!—KS#-HTKC‘Q‘...

To match, therefore, ¢i is selected as

T-\2
1 () a2
"t'ﬁ;(‘ﬁ)ﬁk}"‘ ’
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which satisfies the following switchback equation obtained by substitution
of (4a') and (5a’') into (3a):

an)

(Ke=(v+1)dq o, = (v+1)e, ¢ = -Kety o+ 0|77
F 0 )% )4y 9 sto, (‘H"‘

+¢
XX XX *yy

] providing

"s“(ﬁi‘}z‘(;f?)z%; : (26)‘

This completes the matching. A1l the constants are given Eqs. (24), (25)
and (26) with the exception of the doublet strengths D0 and Eo. These
are obtained from an extension of the integral equation analysis given in
Ref. 12. Although the dominant term is given in Ref. 13, an analysis is
: . required to obtain the doublet contributions which are higher order. The
i details are contained in the Appendix and the final results are 1

[ 2 B () BHE) [ o f e oo

+ -52—:; j: pdoj:"(%; - ('2%7)2 S_ME:'Q)“ (272)

E ¥ 1
! .2% s - T'T:T + 2}; f [%jdg (27b)
-1
1
, A, = [l(Fu-FE)dE

with p and & as polar coordinates, and £ is a dummy variable for x. ,
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3.0 RESULTS

To obtain the wall interference corrections to be discussed
in what follows, the free field problem (6a,c,e) was solved by the
SLOR procedure of Ref. 12. The perturbation problem associated with
(6b,d,e) with the far field (22) was solved with the linear counter-
part of this method using modifications of special procedures to
handle the perturbed shock waves developed by R.D. Small* to compute
solutions of the 1ifting line problem formulated in Ref. 10.

As an indication of the size of the basic effect, surface
pressures over a NACA 0012 airfoil at MF = 0.7, ap = 3.5°, were computed
for Ac = Kc =0 for H=1, or h=2. The perturbation values are com-
pared against those of the free field in Fig. 2 and show a surprisingly
small interference effect for this small H value. For this and larger
H, a part of this trend is associated with the small coefficients of the

. gauge functions of H appearing in (4a). A relevant factor may be the
inability of the theory to generate a shock from an initially shockless
flow. As in transonic 1ifting line theory, only shockless perturbations

L. about shockless flows or shocked alterations about shocked cases are

.’; accessible to this theory. For the latter, the jump conditions given

in Ref. 10 must be used for the linear variational problem $;» as pre-
viously indicated. When shocked perturbations occur on shockless flows,
a special inner solution near the shock is required. In spite of these
limitations, it is felt the theory of this report could provide useful
information for the typical case in which shocked flows remained shocked.

In Fig. 3, free and confined chordwise pressures over the same

NACA 0012 airfoil for different heights at a higher Mach number,
. MF = 0.75 are shown. At the incidence indicated (afp = 2°), the typical
supercritical pressure distributions are evident. As anticipated, the

confined pressures approach the free field values as H increases.
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Fig. 2. Free and confined chordwise pressures NACA 0012 airfoil
- Me=0.7, aF-3.5°.AC-Kc-0. H=1
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Fig. 3. Free and confined chordwise pressures NACA 0012 airfofl
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A comparison of the perturbation solution of this report with
that of the "exact" problem embodied in Eqs. (3) is shown in Fig. 4.
The agreement is only fair for this low value of H with considerable
degradation downstream of the shock. This may be related in some degree
to the numerical anproximations required to handle nodes in the vicinity
of the shock, and the need for a local solution there.

As anticipated, the agreement between exact and perturbation
solutions improves with an increase in H as shown in Fig. 5. However,
here, there appears to be some deterioration near the trailing edge. In
making these comparisons, a certain degree of sensitivity and nonunique-
ness was experienced with respect to restarts of the exact and perturbation
codes to obtain the various parametric ases. Multiple solutions and
hysteretic behavior have been ascribed to underlying properties of the
continuuw, problem in the free field case for the full potential equation
in Ref. 15. The confined problem may also have these features. Since :
small differences are involved in the interference assessments, under-
standing the source of these nonuniquenesses deserves attention in
future effort not only with asymptotic methods but in purely computational
tunnel wall procedures as well. Other aspects associated with validations
of this type relate to truncation errors of the computational solutions,
the role of the far field, initial conditions for the SLOR algorithm and
the degree to which the Kutta condition is satisfied.

As a further indication of the significance of some of these
factors, the 1ift coefficients for the perturbation and exact solutions
have been compared at various heights for the two cases considered in
Figs. 1-4. In Table 1, excellent agreement is shown over the entire range
of heights with some understandable increased discrepancy at H = 1. In
view of the accuracy factors previously enumerated, this agreement is
somewhat better than would be anticipated.

2-25

<

. R T A\ AT " e 5 A A R ~ary IRy R 1 1 g s e




SC5267.3FR

-16rrrrr—r 7 r T T T T T T T T T T
-1.2
-0.8
-
Cp -04
0.0
PERTURBATION SOLUTION
04- ——— “EXACT" SOLUTION :
O,BFJJLILIIIIJILLIILIIJ 4
-0 -8 -6 -4 -2 00 2 4 6 8 10 '
X

Fig. 4. Comparison between exact and approximate chordwise pressures on
confined airfoil NACA 0012 airfoil MF-0.75. aF-2°. H=1,
Ac-Kc-O
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! S TABLE 1. COMPARISON OF LIFT COEFFICIENTS CL FOR CONFINED
i NACA 0012 AIRFOIL AT VARIOUS WALL™HEIGHTS,
M. = .7, o = 3.5°
F F
H
Method 1 2 3 4 5
Exact 0.3655 | 0.3653 | 0.3652 | 0.3652 0.3652
Asymptotic|{ 0.3662 | 0.3654 | 0.3653 | 0.3652 0.3652
Solution

In Table 2, a similar comparison is shown, again indicating good
agreement, but with increasing discrepancies at the lower H's.

TABLE 2. COMPARISON OF LIFT COEFFICIENTS CL FOR CONFINED
NACA 0012 AIRFOIL AT VARIOUS WALLTHEIGHTS,
MF = .75, ap = 2°

- o Metho 1 2 3 4 5 6
Exact 0.4322 1 0.4256 {0.4234 | 0.4234 | 0.4233 | 0.4234

Asymptotic |0.4356 | 0.4264 |0.4248 | 0.4242 | 0.4238 | 0.4237
Solution

It is interesting to note that strictly in accord with the
asymptotic order of magnitude of the second order switchback term of
« Eq. (4a'), the perturbations associated with the solid walls are
é , O(%nH/H?) which are smaller tha:: the 0(H™!) one for the perturbation
solution relevant to the porous case described in Ref. 8. Since
porosity is introduced to weaken the wall interactions, this would
H ’ superficially seem paradoxical. However, the coefficients of the indi-
cated gauge functions of H do also play a role. From a numerical
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viewpoint, these could effect the trend. Another perhaps more salient
consideration deals with one motivation for porosity as a means of
cancelling compression and expansion wave reflections. This mechanism

is of limited relevance to the subsonic far field assumed in the formula-
tion of this report. Accordingly, it is reasonable to state that whereas
perforated walls can minimize supersonic wave reflection interference,
they may not be optimum to reduce the subsonic constriction type. This
aspect is probably related to the order of magnitude considerations
mentioned previously. '

Regarding interference minimization, Fig. 6 shows the interference
1ift CL as a function of the tunnel wall interference angle of attack
parameter AC' The intersection with the absissca is the tunnel incidence
correction required to produce the free field 1ift characteristics. Fig. 7
gives a similar curve at a larger Mach number but smaller geometric inci-
dence requiring a larger Ac correction. In accord with (4a'), variations
of this type can be used as a universal curve valid for arbitrary H's
within assumptions of the asymptotic theory. A similar conclusion applies
to the other forces and moments as well as the surface pressures. For
pressures, the interference can only be reduced in a mean squared sense
by adjusting Ac or KC.
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4.0 CONCLUSIONS

An asymptotic theory of solid tunnel wall interference on
transonic airfoils has been developed based on the 1imit of large wall
height within the Karman Guderley (KG) theory. This approximation
leads to a singular perturbation problem in which the near field approxi-
mation of weak linear perturbations about the KG small disturbance model
is non-uniformly valid as the walls are approached. A far field for
the near field problem comes from an "outer" approximation involving
wall reflections of a multipole representation of the airfoil dominated
by a reflected potential vortex. From the analysis and results, the
following observations can be made:

o Switchback terms are needed in the transonic case to
properly match the near and far fields. These alter the
effective similarity parameter of the confined flow field.

e Perturbations of the pressures and forces in the near field
are O(&nH/H?),

e The asymptotic theory provides good agreement with the
exact KG model for large to moderate H.

o The usefulness of the theory is enhanced by the fact that
it separates H out of the interference problem and requires
the solution of a nonlinear and linear problem rather than
two nonlinear problems representing respectively the free
and confined fields to obtain the interference correction.

The procedures developed in this report provide a basis for extension to
three-dimensional and unsteady problems. Lifting line and slender body
theory can supply the necessary starting points for the former.
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. APPENDIX
Determination of Eo and D0

Using Green's theorem in a manner similar to that given in Ref.12,
the integral equation obtained for ¢0 is

o(%.Y) f 5, [0,0,4n - I 3], 11, e -r[(%%)w -1, (A1)

where the subscripts on ¢ have been dropped, [f]w y=0+ LI
change of notation from the previous sections, X = x, Y = \/Rﬁ ¥,
S = %; an V(x-£)24(Y-n)?, T = [¢]w , £ and n are dummy versions of

with a

. X and Y and

’ - ﬂ S0V, Ean)e2(Emm) didn . ' (A2)

Ref. 12 is restricted to the nonlifting case, and in that situation, ¢§
dies off sufficiently rapidly so tiat a convergent integral involving
the average source strength is obtained by placing the SE kernel in (A2)
outside the integral signs. This is true since ¢ in the nonlifting case
is asymptotically a doublet and is o(r"?) as r + =, By contrast, ¢ is

a potential vortex in accord with (7a) and ¢E can no longer be regarded
as approximately of compact support. To deal with this difficulty, I

is written in the following form:

Lot -
B e = pgmtre =R e W

* 1= I, + I+1; . (A3)
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where
1 2‘.‘1’ 2 M g
Il-LdOL 55°5°"" (A4) ;
2 2 eqn2
- 2_ (L \°sin’o
I, fodp L S€(¢E- (-2;) 7-—) do (A5)

2n 2
N T\ sin?d
I3 J1 °"°£ s(F) 5 do

- o Rcos6-pcosy
SE ('211?) -2Rpcos (8- 9)+o

X = Rcos8, £ = pcosd

In (A3), I has been regularized at = by subtracting and adding the
asymptotic representation of ¢z in that neighborhood. A resulting singu-
larity near the origin is avoided by decomposing the integral into a part
inside the unit circle and outside of it. Since its integrand is of
compact support, 11 can be approximated by the method of Ref. 12, i.e.,
approximation of the integrand for large R and integration term by term.
The same conclusion applies to 12, whose {integrand is 0 %%§ as R » =,
The integral 13 can be treated exactly. However, the operations have

to be performed with great care because of the discontinuous nature of
the integrand. The choice of the lower p 1imit as unity in (A4) and (A5)
Jeads to considerable simplifications as compared to other values and
therefore was adopted.

v A M i o6

The results for Il’ Iz. and 13 are

an
o do (A6)

L= ‘(2117)59';."2 Ll pde
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| e ol (2 -(5) )6 w
tyo - (£) R eose - (£) B2+ (£) g2 (s8)

which upon substitution in (A1) and approximation of the one-dimensional
integrals therein leads to (27).
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